

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Events
The collaboration client has a set of events you can subscribe to. This helps you keep your app's UI in sync with any backend changes that happen.
There are two different ways to subscribe to events - global events and entity specific events
Global events#
Global events are events that are triggered any time any action takes place in the collaboration flow. These events get fired any time any entity a user belongs to is modified, created, or removed.
Global events can be subscribed to via the EventManager.subscribe function.
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({ ...options });

client.EventManager.subscribe('eventName', () => {
 // Handle event here
});

Copy

Below is a list of all global events.
documentLoaded#
Triggered whenever a new document is loaded/displayed in the viewer.
Callback function is passed the Document instance that was loaded.
client.EventManager.subscribe('documentLoaded', (document) => {
 console.log(`Document ${document.id} was loaded`)
});

Copy

documentChanged#
Triggered any time a document instance changed. This includes:
	Any time a new user joins the document, or a user connects/disconnects from the document
	Any time an annotation belonging to the document is added/edited/removed/marked as read
	Any time the document name or 'isPublic' flag is updated

Callback function is passed the Document instance that was changed.
client.EventManager.subscribe('documentChanged', (document) => {
 console.log(`Document ${document.id} was changed`)
});

Copy

documentDeleted#
Triggered when a document is deleted.
Callback is passed the ID of the document that was deleted.
client.EventManager.subscribe('documentDeleted', (id) => {
 console.log(`Document ${id} was deleted`)
});

Copy

annotationAdded#
Triggered when an annotation is added to the currently opened document.
Callback is passed the instance of Annotation that was created.
client.EventManager.subscribe('annotationAdded', (annotation) => {
 console.log(`Annotation ${annotation.id} was created`)
});

Copy

annotationChanged#
Triggered whenever an annotation is changed on the currently opened document. This event is not triggered when an annotation is marked as read.
Callback is passed the instance of Annotation that was changed.
client.EventManager.subscribe('annotationChanged', (annotation) => {
 console.log(`Annotation ${annotation.id} was changed`)
});

Copy

annotationMarkedAsRead#
Triggered whenever an annotation is marked as read by the current user.
Callback is passed the instance of Annotation that was read.
client.EventManager.subscribe('annotationMarkedAsRead', (annotation) => {
 console.log(`Annotation ${annotation.id} was marked as read`)
});

Copy

annotationDeleted#
Triggered whenever an annotation is deleted on the currently opened document.
Callback is passed the ID of the annotation that was deleted.
client.EventManager.subscribe('annotationDeleted', (id) => {
 console.log(`Annotation ${id} was deleted`)
});

Copy

snapshotAdded#
Triggered whenever a snapshot of the currently opened document is created.
Callback is passed an instance of the Snapshot that was created.
client.EventManager.subscribe('snapshotAdded', (snapshot) => {
 console.log(`Snapshot ${snapshot.name} was created`)
});

Copy

snapshotChanged#
Triggered whenever a snapshot of the currently opened document is edited.
Callback is passed an instance of the Snapshot that was edited.
client.EventManager.subscribe('snapshotChanged', (snapshot) => {
 console.log(`Snapshot ${snapshot.name} was edited`)
});

Copy

snapshotDeleted#
Triggered whenever a snapshot of the currently opened document is deleted.
Callback is passed the ID of the snapshot that was deleted.
client.EventManager.subscribe('snapshotDeleted', (id) => {
 console.log(`Snapshot ${id} was deleted`)
});

Copy

snapshotRestored#
Triggered whenever the currently opened document is restored to a snapshot.
Callback is passed an instance of the Snapshot that was restored. A second sync parameter is also passed, more info on that here.
client.EventManager.subscribe('snapshotRestored', (snapshot, sync) => {
 console.log(`Snapshot ${snapshot.id} was restored`)
});

Copy

userLoggedIn#
Triggered whenever a user is logged in via loginAnonymously, loginWithPassword, or loginWithToken.
Callback is passed an instance of User, representing the user that was logged in.
client.EventManager.subscribe('userLoggedIn', (user) => {
 console.log(`User ${user.id} was logged in`)
});

Copy

inviteReceived#
Triggered whenever the currently logged in user receives an invite to a document.
Callback is passed the Document that the user was invited to.
client.EventManager.subscribe('inviteReceived', (document) => {
 console.log(`User was invited to ${document.name}`)
});

Copy

mentionAdded#
Triggered whenever the the user is mentioned in an annotation.
Callback is passed an instance of Mention.
client.EventManager.subscribe('mentionAdded', (mention) => {
 console.log(`User was mentioned in ${mention.annotation.document.name}`)
});

Copy

mentionDeleted#
Triggered whenever an annotation the user is mentioned in is deleted.
Callback is passed the ID of the mention that was deleted.
client.EventManager.subscribe('mentionDeleted', (id) => {
 console.log(`Mention ${id} was deleted`)
});

Copy

enteredPreviewMode#
Triggered whenever the viewer goes into preview mode. Preview mode is entered when a user is viewing a snapshot.
Callback is passed an instance of Snapshot that is being previewed.
client.EventManager.subscribe('enteredPreviewMode', (snapshot) => {
 console.log(`Previewing ${snapshot.name}`)
});

Copy

exitedPreviewMode#
Triggered whenever the viewer leaves preview mode.
Callback is passed an instance of Snapshot that was being previewed.
client.EventManager.subscribe('exitedPreviewMode', (snapshot) => {
 console.log(`No longer previewing ${snapshot.name}`)
});

Copy

annotationSizeError#
Triggered when maxAnnotationSize is set and an annotation is created that is larger than the threshold.
Callback is passed the instance of Annotation that was created.
client.EventManager.subscribe('annotationSizeError', (annotation) => {
 console.log(`Annotation ${annotation.id} is too large`)
});

Copy

connectedUsersChanged#
Only triggered when the connected users feature is turned on.
This event is triggered when:
	A user connects or disconnects to the currently opened document
	A user changes the page they are currently viewing

Callback is passed three parameters:
	users (User[]) A list of users that are currently viewing the document.
	document (Document) The document the users connected to.
	action ("ADD", "DELETE", or "EDIT) The action that triggered this event

client.EventManager.subscribe('connectedUsersChanged', (users, document) => {

 for(const user of users) {
 console.log(`${user.userName} is viewing page ${user.pageNumber} of ${document.name}`)
 }

});

Copy

scrollSyncSessionsChanged#
Triggered whenever a scroll sync session is created or destroyed.
Callback is passed an array of ScrollSyncSession that are available to join.
client.EventManager.subscribe('scrollSyncSessionsChanged', (sessions) => {
 for(const session of sessions) {
 console.log(`${session.leader.userName} is leading a scroll sync session`)
 }
});

Copy

joinedScrollSyncSession#
Triggered whenever a user joins a scroll sync session.
Callback is passed the ScrollSyncSession that the user joined.
client.EventManager.subscribe('joinedScrollSyncSession', (session) => {
 console.log(`User joined scroll sync session ${session.id}`)
});

Copy

leftScrollSyncSession#
Triggered whenever a user leaves a scroll sync session.
Callback is passed the ID of the session that was left.
client.EventManager.subscribe('leftScrollSyncSession', (sessionId) => {
 console.log(`User left scroll sync session ${sessionId}`)
});

Copy

annotationPermissionError#
Triggered when a user tried to add, edit, delete, or read an annotation without proper permissions.
Callback is passed two arguments:
	action (string) The action the user tried to perform. One of: 'ADD' | 'DELETE' | 'MODIFY' | 'READ'
	annotation (Annotation - optional) If available, the annotation instance they tried to alter is provided.

client.EventManager.subscribe('annotationPermissionError', (action, annotation) => {
 switch(action) {
 case 'ADD':
 console.log(`User attempted to create annotation without permissions`);
 break;
 case 'DELETE':
 console.log(`User attempted to delete annotation without permissions`);
 break;
 case 'MODIFY':
 console.log(`User attempted to modify annotation without permissions`);
 break;
 case 'READ':
 console.log(`User attempted to read annotation without permissions`);
 break;
 }
});

Copy

documentPermissionError#
Triggered when a user tried to add, edit, delete, read, or invite to a document without proper permissions.
Callback is passed two arguments:
	action (string) The action the user tried to perform. One of: 'ADD' | 'DELETE' | 'MODIFY' | 'READ' | 'INVITE'
	document (Document - optional) If available, the document instance they tried to alter is provided.

client.EventManager.subscribe('documentPermissionError', (action, annotation) => {
 switch(action) {
 case 'ADD':
 console.log(`User attempted to create document without permissions`);
 break;
 case 'DELETE':
 console.log(`User attempted to delete document without permissions`);
 break;
 case 'MODIFY':
 console.log(`User attempted to modify document without permissions`);
 break;
 case 'READ':
 console.log(`User attempted to read document without permissions`);
 break;
 case 'INVITE':
 console.log(`User attempted to invite a user to a document without permission`);
 break;
 }
});

Copy

snapshotPermissionError#
Triggered when a user tried to add, edit, delete, read, or restore a snapshot without proper permissions.
Callback is passed two arguments:
	action (string) The action the user tried to perform. One of: 'ADD' | 'DELETE' | 'MODIFY' | 'READ' | 'RESTORE'
	snapshot (Snapshot - optional) If available, the snapshot instance they tried to alter is provided.

client.EventManager.subscribe('documentPermissionError', (action, annotation) => {
 switch(action) {
 case 'ADD':
 console.log(`User attempted to create snapshot without permissions`);
 break;
 case 'DELETE':
 console.log(`User attempted to delete snapshot without permissions`);
 break;
 case 'MODIFY':
 console.log(`User attempted to modify snapshot without permissions`);
 break;
 case 'READ':
 console.log(`User attempted to read snapshot without permissions`);
 break;
 case 'RESTORE':
 console.log(`User attempted to restore a snapshot without permission`);
 break;
 }
});

Copy

Entity Specific Events#
In addition to the global events documented above, you can also subscribe to events on an entity level.
Call the subscribe function on the entity to subscribe to the events.
Document events#
Instances of Document triggers the following events:
	onChange Triggered when the document instance changes. Callback function is passed the instance of the document
	onDestroy Triggered when the Document is deleted. Callback function accepts the ID of the deleted document
	snapshotAdded Triggered when a snapshot of this document is created. Callback function accepts the Snapshot that was created.
	connectedUsersChanged Triggered when a user connects, disconnects, or views a new page of this document. Callback function accepts a list of users that are connected, and the action that triggered the event.

const user = await client.loginAnonymously("Joe")
const document = await user.getDocument('123')

document.subscribe('onChange', (document) => {
 console.log(`Document ${document.name} was edited`);
})

document.subscribe('onDestroy', (id) => {
 console.log(`Document ${id} was destroyed`);
})

document.subscribe('snapshotAdded', (snapshot) => {
 console.log(`Snapshot ${snapshot.name} of ${document.name} was created`);
})

document.subscribe('connectedUsersChanged', (users) => {
 for(const user of users) {
 console.log(`${user.userName} is viewing page ${user.pageNumber} of ${document.name}`)
 }
})

Copy

Annotation events#
Instances of Annotation triggers the following events:
	markedAsRead Triggered when the annotation is marked as read. Callback function accepts the Annotation as a parameter.
	onChange Triggered when the annotation instance changes. Callback function is passed the instance of the annotation
	onDestroy Triggered when the Annotation is deleted. Callback function accepts the ID of the deleted annotation

const user = await client.loginAnonymously("Joe")
const document = await user.getDocument('123')
const annotations = await document.getAnnotations();

for(const annotation of annotations) {
 annotation.subscribe('markedAsRead', (annot) => {
 console.log(`Annotation ${annot.id} was marked as read`)
 })

 annotation.subscribe('onDestroy', (id) => {
 console.log(`Annotation ${id} was destroyed`)
 })

 annotation.subscribe('onChange', (annot) => {
 console.log(`Annotation ${annot.id} was changed`)
 })
}

Copy

Mention events#
Instances of Mention triggers the following events:
	markedAsRead Triggered when the Mention is marked as read. Callback function accepts the Mention as a parameter.
	onChange Triggered when the Mention instance changes. Callback function is passed the instance of the mention.
	onDestroy Triggered when the Mention is deleted. Callback function accepts the ID of the deleted mention

client.EventManager.subscribe('mentionAdded', (mention) => {

 mention.subscribe('markedAsRead', (mention) => {
 console.log(`Mention ${mention.id} was marked as read`);
 })

 mention.subscribe('onChange', (mention) => {
 console.log(`Mention ${mention.id} was changed`);
 })

 mention.subscribe('onDestroy', (id) => {
 console.log(`Mention ${id} was deleted`);
 })
});

Copy

Snapshot events#
Instances of Snapshot triggers the following events:
	restored Triggered when the Snapshot is restored. Callback function accepts the Snapshot as a parameter.
	onChange Triggered when the Snapshot instance changes. Callback function is passed the instance of the snapshot.
	onDestroy Triggered when the Snapshot is deleted. Callback function accepts the ID of the deleted snapshot.

const user = await client.loginAnonymously("Joe")
const document = await user.getDocument('123');
const mentions = await document.getMentions()

for(const mention of mentions) {

 mention.subscribe('restored', (snapshot) => {
 console.log(`Snapshot ${snapshot.name} was restored`)
 })

 mention.subscribe('onChange', (snapshot) => {
 console.log(`Snapshot ${snapshot.name} was changed`)
 })

 mention.subscribe('onDestroy', (id) => {
 console.log(`Snapshot ${id} was destroyed`)
 })
}

Copy

Unsubscribing from events#
Every subscribe function returns a function that can be called to unsubscribe from the event.
const unsubscribe = client.EventManager.subscribe('annotationAdded', (annotation) => {
 console.log(`Annotation ${annotation.id} was created`)
});

// To unsubscribe
unsubscribe();

Copy

Listening to an event only once#
To immediately unsubscribe from an event as soon as its triggered, call the unsubscribe function inside the callback function.
const unsubscribe = client.EventManager.subscribe('annotationAdded', (annotation) => {
 console.log(`Annotation ${annotation.id} was created`);
 unsubscribe();
});

Copy

Previous
« Mentions

Next
Pagination »

	Global events	documentLoaded
	documentChanged
	documentDeleted
	annotationAdded
	annotationChanged
	annotationMarkedAsRead
	annotationDeleted
	snapshotAdded
	snapshotChanged
	snapshotDeleted
	snapshotRestored
	userLoggedIn
	inviteReceived
	mentionAdded
	mentionDeleted
	enteredPreviewMode
	exitedPreviewMode
	annotationSizeError
	connectedUsersChanged
	scrollSyncSessionsChanged
	joinedScrollSyncSession
	leftScrollSyncSession
	annotationPermissionError
	documentPermissionError
	snapshotPermissionError

	Entity Specific Events	Document events
	Annotation events
	Mention events
	Snapshot events

	Unsubscribing from events	Listening to an event only once

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

