

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Versioning / Snapshots
Versions of documents can be created by creating "Snapshots".
A snapshot is just a copy of a document at any point of time. A document can be reverted to a snapshot at any time.
note

All the snapshot resolvers must be provided to use this feature

Creating a snapshot#
A snapshot of a document can be created with the Document.createSnapshot() API.
await Document.createSnapshot(name)

Copy

	name (string) The name of the snapshot. Required.

Returns an instance of Snapshot
When a snapshot is created, the server will take all the active annotations on the document, merge them into a single XFDF string, and store that xfdf in the Snapshots table in your database.
If your snapshot contains any large annotations (file attachments, images, etc), they will be extracted and stored separately in the SnapshotAssets table. The reason for this is because we found that SQL like databases are slow at returning large strings, and separating base64 images info their own table significantly improved read times.
Getting snapshots#
Snapshots can be retrieved in two ways: Document.getSnapshotPaginator() or Document.getAllSnapshots().
getSnapshotPaginator#
Document.getSnapshotPaginator(options)

Copy

	options (Paginator options) - Options to feed to the Paginator
	options.before (number - optional) - Only fetch items created before this data
	options.limit (number) - How many items to fetch at a time
	options.orderBy ("createdAt" | "updatedAt") - Which property to sort results by. Defaults to 'createdAt'
	options.orderDirection ("ASC" | "DESC) - Order ascending or descending.

Return an instance of Paginator which can be used to fetch snapshots.
Example
const paginator = document.getSnapshotPaginator({
 limit: 10 // Fetch 10 at a time
})

// Get the first ten snapshots
const firstTen = await paginator.next()

Copy

getAllSnapshots#
Document.getAllSnapshots()

Copy

Returns an array of Snapshot
Previewing a snapshot#
Once you get a snapshot, you can preview it by calling snapshot.preview().
Previewing a snapshot will place the viewer into preview mode - meaning no annotations can be created, and all real time events will be paused until preview mode is exited.
Entering preview mode will trigger the enteredPreviewMode event.
Exiting preview mode#
To leave preview mode, call snapshot.closePreview(). This will exit preview mode, resync all annotations that were missed while in preview mode, and trigger the exitedPreviewMode event.
Restoring a document to a snapshot#
If you want to revert a document to the state of a snapshot, you can use the Snapshot.restore() API.
restore#
Snapshot.restore(backupName)

Copy

	backupName (string - optional) The name of the backup snapshot to be created. Defaults to "Restored {snapshot name}"

This function does a few things:
1) Creates a new snapshot of the current state of the document. This is created in case you want to revert the restoration you made.
2) Updates the live state of the document to the state represented by the snapshot. This is done by deleting all the annotations for that document from the database, and replacing them with the annotations in the snapshot. This is a destructive operation.
3) Triggers the snapshotRestored event for all users.
4) Updates the state of the document only for the current user - See below for more info
Notes about restoring#
By default, when a document is restored to a snapshot, the changes that take place do not get sent to other users. We believe it would be bad UX to randomly change all the annotations on a users document as they are working, which is why we made this functional decision.
If you want to sync a users screen after the snapshot is restored, you can call the sync function that is passed as the second parameter to snapshotRestored. Calling this function will update the users screen to the latest version of the document.
client.EventManager.subscribe('snapshotRestored', (snapshot, sync) => {
 console.log(`Snapshot ${snapshot.id} was restored`);

 // Sync the users screen with the latest annotations
 sync()
});

Copy

This also gives you the opportunity to warn the user that annotations have been restored:
client.EventManager.subscribe('snapshotRestored', (snapshot, sync) => {
 console.log(`Snapshot ${snapshot.id} was restored`);

 if (window.confirm("A snapshot has been restored - do you want to update your annotations?")) {
 sync()
 }
});

Copy

Previous
« Notifications

Next
Scroll Synchronization »

	Creating a snapshot
	Getting snapshots	getSnapshotPaginator
	getAllSnapshots

	Previewing a snapshot	Exiting preview mode

	Restoring a document to a snapshot	restore
	Notes about restoring

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

