

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Core Concepts
Before integrating collaboration into your application, it's important to understand how everything works and fits together.
Overview#
By default, WebViewer Collaboration behaves similar to Slack (except document based rather than chat based).
Slack - In Slack, users create channels to write messages in.
WebViewer Collaboration - In WebViewer Collaboration, users create documents to annotate on.
Slack - In Slack, users can invite other users to join a channel. Once a user has joined the channel, you can type messages back and forth to each other in real time.
WebViewer Collaboration - In WebViewer Collaboration, users can invite other users to documents. Once a user has joined your document, you can create an comment on annotations in real time.
Entities#
There are 6 main entities / data types the collaboration modules work with:
	User
	Document
	Annotation
	Document Member
	Annotation Member
	Mention

Additionally, to use the snapshot feature, the following 2 entities are required.
	Snapshot
	SnapshotAsset

User#
A user entity represents a single user in the application. A user must be signed in in order to perform actions like creating documents or annotations.
Document#
A document entity contains information about a certain document. It does not store the actual PDF document itself, or even the location of it.
note

You can think of a document as a "channel" in a typical chat application.

Annotation#
An annotation represents a single annotation in a PDF document. Each annotation belongs to a single document, and stores info like the annotation's XFDF, who created it, etc. When you load a document, all annotations that belong to that document are also loaded.
note

You can think of an annotation as a "message" in a typical chat application. Each message belongs to a channel (or in our case, a document).

Document Member#
A document member represents a user's membership to a document. Without being a member of a document, the user is unable to see that document (unless it is public).
There are three ways to become a member of a document.
	If you created the document
	If you were invited to the document
	The document is public and you join it

note

In a chat application like Slack, in order to read a private channel, you must "join" it via an invite from someone else. This is exactly how document membership works.

Annotation Member#
An annotation member is very similar to document members, except for annotations.
If you are a member of the document, then by default, you are then a member of all annotations that belong to that document.
Annotation member entities are used to track if a user has read a message or not.
Note

Annotation members are only created when an annotation has been viewed

Mention#
A mention represents a user mentioned in a Note annotation.
A mention overrides the notification and email settings of the annotation that it belongs to.
Snapshots#
A snapshot represents the state of a document at a specific point in time.
Snapshots can be used to restore a document to a previous version.
Snapshot assets#
Snapshot assets are a way of splitting up large XFDF strings for more efficient read queries. They are used only behind the scenes. See this guide for more information.
Resolvers#
WebViewer Collaboration reads and writes data through functions called "resolvers". If you have worked with GraphQL before, you may be familiar with this concept.
A resolver is simply a function that reads or writes data from a database. It resolves data!
There are two kinds of resolvers - mutation and query resolvers.
Mutation resolvers write data to the database (they mutate data), and query resolvers read data from the database (they query data).
All resolver functions accept some data as inputs, and based on that data, they must perform a certain action.
When instantiating the Collab server, you must provide a set of resolvers that allow our server to read and write data from your database. These resolvers are documented here.
info

If you are using an SQL-like database, we have a module to generate these resolvers for you! Check out the SQL Resolver Generator package.

Query resolvers#
As mentioned above, query resolvers are used to read data from your database. They accept some kind of input, and based on that input, return some specific data.
Let's take the user resolver for example. This resolver is used to get a user from your database. An example implementation might look like this:
const server = new CollabServer({
 resolvers: {
 Query: {
 user: async (id) => {
 const db = getDatabaseConnection();
 const user = await db.query(`SELECT * FROM Users WHERE id = ${id}`);
 return user;
 },
 },
 },
});

Copy

You can see here that the resolver function accepts a user id, and returns that user from your database. Whenever the Collaboration server needs to fetch a user, it can now do so by calling this resolver!
Mutation resolvers#
Mutation resolvers are very similar, except they write data instead of reading it. They accept the data that needs to be written, and in return must write that data.
Let's look at the addUser resolver for example:
const server = new CollabServer({
 resolvers: {
 Mutation: {
 addUser: async (user) => {

 const db = getDatabaseConnection();

 const newUser = await db
 .insert('users')
 .values({
 type: user.type,
 email: user.email,
 user_name: user.userName,
 created_at: user.createdAt,
 updated_at: user.updatedAt
 });

 return newUser;
 },
 },
 },
});

Copy

This function accepts a user entity, and you must write that user to your database. Now, whenever the Collab Server needs to add a user to your database, it just needs to call this resolver!
info

All mutation resolvers must return the data that was written.

Default resolvers#
Writing these resolvers can be a little bit boring and error prone. As such, we provide a couple ways to automatically generate these resolvers for you.
If you are using our default database, then the resolvers are already created for you! You can get them with the getResolvers() function.
If you are using an SQL like database, you can use our SQL Resolver Generator package to generate resolvers for you!

Previous
« Introduction

Next
Get started »

	Overview
	Entities	User
	Document
	Annotation
	Document Member
	Annotation Member
	Mention
	Snapshots
	Snapshot assets

	Resolvers	Query resolvers
	Mutation resolvers
	Default resolvers

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

