

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Data types and schema
In order for the collaboration system to work, the following data must be able to be provided by your backend.
note

If you are using the default database, all of this data is provided by default, so you can skip this page.

info

The data in your database does not need to be stored exactly as specified below. You just need to be able to provide this data in your resolvers. If your data is stored in a different shape, you can use the resolvers to transform your spec into our spec.

Data types#
Users#
You must be able to provide the following information about users:
	id the user's unique ID
	email the user's email
	type the type of user, either STANDARD or ANONYMOUS
	createdAt the date the user was created (epoch timestamp in MS)
	updatedAt the date the document was last updated (epoch timestamp in MS)

Documents#
You must be able to provide the following information about documents
	id the document's unique ID
	authorId the ID of the user who created the document
	createdAt the date when the document was created (epoch timestamp in MS)
	updatedAt the date when the document was last updated (epoch timestamp in MS)
	isPublic whether or not the document is publicly viewable
	name the name of the document

Annotations#
You must be able to provide the following information about annotations
	id the annotation's unique ID
	xfdf the XFDF command for the annotation
	authorId the ID of the user who created the annotation
	annotationId the ID of the annotation generated by client side. May not necessarily be unique. If your database does not currently store this value, it can be parsed from the XFDF.
	documentId the ID of the document that the annotation belongs to
	pageNumber the page number for the annotation
	createdAt the date when the annotation was created (epoch timestamp in MS)
	updatedAt the date when the annotation was last updated (epoch timestamp in MS)
	inReplyTo the ID of the parent annotation

Document Memberships#
You must be able to provide the following information about a user's membership to a document.
In most existing systems, this table will not exist. In that case, you can just create one and store the following data.
	id the document membership's unique ID
	userId the ID of the user who this membership belongs to
	documentId the ID of the document that this membership belongs to
	lastRead the date when the document was last read (epoch timestamp in MS)
	createdAt the date when the membership was created (epoch timestamp in MS)
	updatedAt the date when the member was last updated (epoch timestamp in MS)

Annotation Memberships#
You must be able to provide the following information about a user's membership to an annotation.
In most existing systems, this table will not exist. In that case, you can just create one and store the following data.
	id the annotation membership's unique ID
	userId the ID of the user who this membership belongs to
	documentId the ID of the document that this membership belongs to
	annotationId the ID of the annotation this membership belongs to
	lastRead the date when the annotation was last read (epoch timestamp in MS)
	createdAt the date when the membership was created (epoch timestamp in MS)
	updatedAt the date when the member was last updated (epoch timestamp in MS)
	annotationCreatedAt the date when the associated annotation was created (epoch timestamp in MS)

Mentions#
You must be able to provide the following information about a mention to an annotation.
In most existing systems, this table will not exist. In that case, you can just create one and store the following data.
	id the mention unique ID
	userId the ID of the user who this mention belongs to
	documentId the ID of the document that this mention belongs to
	annotationId the ID of the annotation that this mention belongs to
	createdAt the date the mention was created (epoch timestamp in MS)
	updatedAt the date the mention was last updated (epoch timestamp in MS)

Snapshots (optional)#
If using the snapshots feature, you must be able to provide information about snapshots.
In most existing systems, this table will not exist. In that case, you can just create one and store the following data.
	id the snapshots unique ID
	authorId the user ID of the user who created the snapshot
	documentId the ID of the document this snapshot belongs tp
	xfdf the XFDF string for the snapshot
	namethe name of the snapshot
	createdAt the date the mention was created (epoch timestamp in MS)
	updatedAt the date the mention was last updated (epoch timestamp in MS)

Snapshot assets (optional)#
If using the snapshots feature, you must be able to provide information about snapshot assets.
In most existing systems, this table will not exist. In that case, you can just create one and store the following data.
	id the snapshot assets unique ID
	snapshotId the ID of the snapshot this asset belongs too
	data the base64 data of the asset
	createdAt the date the mention was created (epoch timestamp in MS)
	updatedAt the date the mention was last updated (epoch timestamp in MS)

Recommended database schema#
If you are starting from scratch or are creating new tables for collaboration, we recommend the following database structure. The following query is SQL, but can translate to any database.
CREATE TYPE user_type AS ENUM('ANONYMOUS', 'STANDARD');

CREATE TYPE user_status AS ENUM ('ACTIVE', 'INACTIVE');

CREATE TABLE users (
 id VARCHAR(36) NOT NULL PRIMARY KEY,
 user_name VARCHAR(50),
 email VARCHAR(150) UNIQUE,
 password VARCHAR(64),
 status user_status,
 type user_type,
 custom_data JSONB,
 created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 updated_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP
);

CREATE TABLE documents (
 id VARCHAR(36) NOT NULL PRIMARY KEY,
 created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 author_id VARCHAR(36) REFERENCES users (id),
 updated_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 is_public BOOLEAN NOT NULL,
 name VARCHAR(1000)
);

CREATE TABLE annotations (
 id VARCHAR(36) NOT NULL PRIMARY KEY,
 xfdf TEXT,
 annot_contents Text,
 author_id VARCHAR(36) REFERENCES users (id),
 annotation_id VARCHAR(36) NOT NULL,
 document_id VARCHAR(36) REFERENCES documents (id) ON DELETE CASCADE,
 page_number INT NOT NULL,
 created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 updated_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 in_reply_to VARCHAR(36)
);

CREATE TABLE annotation_members (
 id VARCHAR(36) NOT NULL PRIMARY KEY,
 user_id VARCHAR(36) REFERENCES users (id),
 document_id VARCHAR(36) REFERENCES documents (id) ON DELETE CASCADE,
 annotation_id VARCHAR(36) REFERENCES annotations (id) ON DELETE CASCADE,
 last_read timestamptz DEFAULT CURRENT_TIMESTAMP,
 created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 updated_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 annotation_created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 UNIQUE (user_id, document_id, annotation_id)
);

CREATE TABLE document_members (
 id VARCHAR(36) NOT NULL PRIMARY KEY,
 user_id VARCHAR(36) REFERENCES users (id),
 document_id VARCHAR(36) REFERENCES documents (id) ON DELETE CASCADE,
 last_read timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 updated_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 UNIQUE (user_id, document_id)
);

CREATE TABLE mentions (
 id VARCHAR(36) NOT NULL PRIMARY KEY,
 user_id VARCHAR(36) REFERENCES users (id),
 document_id VARCHAR(36) REFERENCES documents (id) ON DELETE CASCADE,
 annotation_id VARCHAr(36) REFERENCES annotations (id) ON DELETE CASCADE,
 created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 updated_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 UNIQUE (user_id, document_id, annotation_id)
);

CREATE TABLE snapshots (
 id VARCHAR(36) NOT NULL PRIMARY KEY,
 author_id VARCHAR(36) REFERENCES users (id),
 document_id VARCHAR(36) REFERENCES documents (id) ON DELETE CASCADE,
 xfdf TEXT,
 name VARCHAR(1000),
 created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 updated_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP
);

CREATE TABLE snapshot_assets (
 id VARCHAR(36) NOT NULL PRIMARY KEY,
 snapshot_id VARCHAR(36) REFERENCES snapshots (id) ON DELETE CASCADE,
 data TEXT,
 created_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP,
 updated_at timestamptz NOT NULL DEFAULT CURRENT_TIMESTAMP
);

Copy

Previous
« Get started

Next
File storage »

	Data types	Users
	Documents
	Annotations
	Document Memberships
	Annotation Memberships
	Mentions
	Snapshots (optional)
	Snapshot assets (optional)

	Recommended database schema

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

