

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.




WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing









	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2


	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging


	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check




	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation


	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging


	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession



Setting up the database
We provide a script to generate all the tables needed to use Webviewer Collaboration, as well as to start a local docker instance.
info

Before using these scripts, please make sure you are in the root directory for this module.
cd node_modules/@pdftron/collab-db-postgresql


Copy



Starting up a local database#
If you already have a postgres database running, you can skip this step.
If you do not have a local postgres database running, you can use the following script to start one using docker.
Docker must be installed on your machine for this to work.
yarn start-local-db [--options]


Copy

If you are using the standalone package you can run the included script like so
node lib/collab-db-postgresql/scripts/start-local-db.js [--options]


Copy

Options
	Option	Required	Description	Default
	--directory, -d	false	Local mount point for Postgres data files	{homedir}/docker/volumes/postgres
	--name, -n	false	Name of the docker container	pg-docker
	--port, -p	false	Port to run the database on	5432
	--password	true	A password for the database	
	--noMount, -n	false	Disables volume mounting. More info	false

This will spin up a docker container with a postgres database installed.
Initializing the database#
To set up the required tables and relations in your database, run the following script.
The operation is not destructive, however, we recommend running it against an empty database
yarn init-db [--options]


Copy

If you are using the standalone package you can run the included script like so
node lib/collab-db-postgresql/scripts/init-db.js [--options]


Copy

Options
	Option	Required	Description	Default
	--host, -h	false	The host to connect to	127.0.0.1
	--port, -p	false	The port to connect on	5432
	--username, -u	false	The username to log in with	postgres
	--password	true	The password to log in with	
	--dbName	true	The name of the database to create	
	--sslKey	false	The file path of SSL private keys	
	--sslCert	false	The file path of SSL certificate chains	

If the operation is successful, all the required tables should be created in your database!
Viewing the database#
If you wish to view the schema and data inside your database, you will need to use a database client to connect to your database.
We recommend Beekeeper Studio. It is open source, free, and very simple to use.
When setting up the database connection in whichever client you choose, you can use this information:
	Setting name	Value
	Connection Type	Postgres
	Host	localhost
	Port	5432
	Enable SSL	No
	User	postgres
	Password	{The password you entered when running the startup script}
	Default Database	{The dbName you provided in the initialize script}

Troubleshooting#
The above scripts are intended to work on any OS, however, sometimes Docker does not play nicely on certain systems (looking at you, Windows).
Below are some issues users have come across, and some potential steps to fixing them. We will keep this list up to date as problems & solutions arise.
Cannot start Docker container - errors mounting volume#
There are plenty of reports (#77, #44, #10693) of users having issues mounting Docker volumes on Windows. This causes the Docker container to fail when starting up.
Since this is such a widespread issue with many different solutions, we recommend trying the solutions people have proposed in the links above.
If none of these works, the last resort is to not mount the volume when starting the database. This works fine for testing purposes, but your data will not be persisted if the container shuts down.
To start the database with no volume mounting, pass --noMount as a parameter to the start-local-db script.
Next steps#
	Connecting to the database


Previous
« Getting started

Next
Connecting to the database »




	Starting up a local database
	Initializing the database
	Viewing the database
	Troubleshooting	Cannot start Docker container - errors mounting volume


	Next steps





Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB


More
	API reference
	Collaboration Demo
	Support


PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase



Copyright © 2022 PDFTron Systems Inc.













