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The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.
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Setting up the database
We provide a script to generate all the tables needed to use Webviewer Collaboration, as well as to start a local docker instance.
info

Before using these scripts, please make sure you are in the root directory for this module.
cd node_modules/@pdftron/collab-db-postgresql


Copy



Starting up a local database#
If you already have a postgres database running, you can skip this step.
If you do not have a local postgres database running, you can use the following script to start one using docker.
Docker must be installed on your machine for this to work.
yarn start-local-db [--options]


Copy

If you are using the standalone package you can run the included script like so
node lib/collab-db-postgresql/scripts/start-local-db.js [--options]


Copy

Options
	Option	Required	Description	Default
	--directory, -d	false	Local mount point for Postgres data files	{homedir}/docker/volumes/postgres
	--name, -n	false	Name of the docker container	pg-docker
	--port, -p	false	Port to run the database on	5432
	--password	true	A password for the database	
	--noMount, -n	false	Disables volume mounting. More info	false

This will spin up a docker container with a postgres database installed.
Initializing the database#
To set up the required tables and relations in your database, run the following script.
The operation is not destructive, however, we recommend running it against an empty database
yarn init-db [--options]


Copy

If you are using the standalone package you can run the included script like so
node lib/collab-db-postgresql/scripts/init-db.js [--options]


Copy

Options
	Option	Required	Description	Default
	--host, -h	false	The host to connect to	127.0.0.1
	--port, -p	false	The port to connect on	5432
	--username, -u	false	The username to log in with	postgres
	--password	true	The password to log in with	
	--dbName	true	The name of the database to create	
	--sslKey	false	The file path of SSL private keys	
	--sslCert	false	The file path of SSL certificate chains	

If the operation is successful, all the required tables should be created in your database!
Viewing the database#
If you wish to view the schema and data inside your database, you will need to use a database client to connect to your database.
We recommend Beekeeper Studio. It is open source, free, and very simple to use.
When setting up the database connection in whichever client you choose, you can use this information:
	Setting name	Value
	Connection Type	Postgres
	Host	localhost
	Port	5432
	Enable SSL	No
	User	postgres
	Password	{The password you entered when running the startup script}
	Default Database	{The dbName you provided in the initialize script}

Troubleshooting#
The above scripts are intended to work on any OS, however, sometimes Docker does not play nicely on certain systems (looking at you, Windows).
Below are some issues users have come across, and some potential steps to fixing them. We will keep this list up to date as problems & solutions arise.
Cannot start Docker container - errors mounting volume#
There are plenty of reports (#77, #44, #10693) of users having issues mounting Docker volumes on Windows. This causes the Docker container to fail when starting up.
Since this is such a widespread issue with many different solutions, we recommend trying the solutions people have proposed in the links above.
If none of these works, the last resort is to not mount the volume when starting the database. This works fine for testing purposes, but your data will not be persisted if the container shuts down.
To start the database with no volume mounting, pass --noMount as a parameter to the start-local-db script.
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