

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

User management
If you want to use the default database to manage your users, we provide some utility APIs to help achieve this. If you need any flexibility beyond what we provide, you should consider setting up your own database for user management.
Creating users#
note

Please note that this is an API for creating users in your database with a username and password. If you have your own user database set up, you should not use these apis.
If you are looking to create an anonymous user, please follow this guide.

To create a user, use the createUser API.
createUser(user): Promise<DatabaseUser>#
	user (object) information about the user to create	email (string) the users email
	password (string) the users hashed password. Do not store plain text passwords!
	userName (string) the users username. Optional.

Returns a DatabaseUser entity..
To use this API its recommended to set up your own endpoint (probably using express).
Example
import CollabDatabase from '@pdftron/collab-db-postgresql';
import express from 'express';

const db = new CollabDatabase({
 ...params
})
await db.connectDB();

const app = express();

app.post('/sign-up', async (req, res) => {

 const { userName, email, password } = req.body;

 // Make sure to hash your password!
 const hashedPassword = hashPassword(password)

 const user = await db.createUser({
 userName,
 email,
 password: hashedPassword
 })

 return res.status(200).send({
 id: user.id
 })
})

app.listen(3000)

Copy

Getting users#
There are three ways to get user data, documented below.
getUser(id): Promise<DatabaseUser>#
	id (string) the users id

Gets a user by their ID.
Resolves with a DatabaseUser entity.
getUserByEmail(email): Promise<DatabaseUser>#
	email (string) the email of the user

Gets a user by their email.
Resolves with a DatabaseUser entity.
getUserByUsername(username): Promise<DatabaseUser>#
	username (string) the username of the user

Gets a user by their username.
Resolves with a DatabaseUser entity.
Editing users#
You can use the following APIs to edit and disable a user.
editUser(user): Promise<DatabaseUser>#
	user (DatabaseUser) the information to edit. Only id is required to identify the user you want to edit, all other fields are optional. Only fields you pass in will be updated.

Resolves with the updated DatabaseUser
deactivateUser(id): Promise<DatabaseUser>#
	id (string) the Id of the user to deactivate

Sets a users status to INACTIVE
Resolvers with the updated DatabaseUser entity.
Database entities#
DatabaseUser#
A database user entity is an object with the following shape. Properties with a ? are optional (but recommended).
{
 id: string;
 userName?: string;
 type?: 'STANDARD' | 'ANONYMOUS';
 email: string;
 password?: string;
 status?: "ACTIVE" | "INACTIVE";
 createdAt?: number (timestamp in ms);
 updatedAt?: number (timestamp in ms);
}

Copy

Previous
« Hooking up to the server

Next
User authentication »

	Creating users	createUser(user): Promise<DatabaseUser>

	Getting users	getUser(id): Promise<DatabaseUser>
	getUserByEmail(email): Promise<DatabaseUser>
	getUserByUsername(username): Promise<DatabaseUser>

	Editing users	editUser(user): Promise<DatabaseUser>
	deactivateUser(id): Promise<DatabaseUser>

	Database entities	DatabaseUser

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

