

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Integrating with an existing database
The WebViewer Collaboration modules are intended to work with existing databases and data. The following guides outline the recommended approach to integrate with an existing database.
The basics#
WebViewer Collaboration reads and writes data through functions called "resolvers". If you have worked with GraphQL before, you may be familiar with this concept.
Before continuing with this guide, we recommend learning about resolvers by reading this guide.
Resolvers are what allows us to integrate with an existing database. Resolvers do not care about how data is read/write, which leaves the implementation and database structure up to you!
Your resolvers are required to be able to read/write all the data specified here. The server does not care about how that data is fetched, - it only cares about what is returned from the function. This leaves the database implementation totally up to you.
Missing data#
Changes to your database may be required to make it work with the data structure that WebViewer Collaboration expects. As long as you are able to read and write all the required data, the structure of your database does not matter.
Missing columns#
In most cases, missing columns in your database can simply be added.
For example, if your existing "Documents" table does not have the isPublic property that WebViewer Collaboration expects to exist, you can just add this column and set the default value to true or false. If you don't plan on using the public documents feature, you could also just hard code your resolver to return false for this property which requires no database changes!
There may also be times where the required data does exist, but it exists in a different table as a foreign key reference. In this case, you can write a join query to fetch all the data required.
Missing tables#
If you are missing an entire table that WebViewer Collaboration expects, you can simply just add it. You can take a look at the data types guide to see what tables are required, as well as their structure.
Incompatible data types#
If the data type in your database is incompatible with what WebViewer Collaboration expects, you can simply transform that data directly in your resolvers.
For example, WebViewer Collaboration expects all timestamps to be a number (unix timestamp) - however, if your database stores timestamps as ISO strings, you will need to transform that data before returning it. Here is an example:
const server = new CollabServer({
 resolvers: {
 Query: {
 user: async (id) => {
 const db = getDatabaseConnection();
 const user = await db.query(`SELECT * FROM Users WHERE id = ${id}`);

 // transform the ISO strings to unix timestamps
 user.createdAt = new Date(user.createdAt).getTime();
 user.updatedAt = new Date(user.updatedAt).getTime();

 return user;
 },
 },
 },
});

Copy

Integrating with an SQL-like database#
If you are using one of the following database:
	PostgreSQL
	MSSQL
	MySQL
	SQLite3
	Oracle

then we recommend using our SQL resolver generator package to integrate into your database.
This package requires you to provide the name of your tables of columns in your database, and in return, generates resolvers.
Other questions#
If you are stuck on implementing your existing database with WebViewer Collaboration, write to us on our community forum and we will be happy to help!

Previous
« File storage

Next
Troubleshooting »

	The basics
	Missing data	Missing columns
	Missing tables
	Incompatible data types

	Integrating with an SQL-like database
	Other questions

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

