

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

File storage
WebViewer Collaboration does not handle file storage for a couple of reasons:
	Security & Privacy - Your files should stay internal to your application and should not be touched by a third party server
	Flexibility - There are thousands of ways to store files in an application, and many applications already have a file storage system in place. We do not want to lock you in to one specific provider or force you to change providers.

What does this mean?#
This means that file storage must be implemented separately from WebViewer Collaboration. You must store your users files somewhere like Amazon S3, Google cloud storage, Azure cloud storage, or even directly on your server. There are a ton of options to choose from and each one has advantages, so choose one that fits your use case the best!
This also means that you must be able to reference and recall these files when necessary. Our recommended approach for this is to assign each file an ID (or use the ID provided by the Collaboration modules), and use that ID to create a link between the Collaboration Document and the actual document on your storage provider.
[image:]
This way, when you need to view a document, you can use that documents ID to grab the file from your storage provider.
Example#
This example uses the document ID created by the database to use as a reference when uploading to cloud storage.
import CollabClient from '@pdftron/collab-client'

const client = new CollabClient({ ...options });
const user = await client.loginAnonymously('Logan');

// This function will handle the case where a user uploads a file/blob to your application
const onFileUploaded = async (blob) => {

 const document = await user.createDocument({
 document: blob,
 name: 'myfile.pdf',
 });

 // This is your own function that takes the document id and the blob and uploads to cloud storage.
 // The name of the file could be the document ID (see the image above)

 // For example, if the document.id was '1',
 // this would upload the file to 'https://my-storage-provider.com/files/1.pdf'
 await uploadFileToCloudStorage(document.id, blob)
}

const documents = await user.getAllDocuments();
const docToLoad = documents[0];

// To load a file, we use the documents ID to generate the path to the file
// on our cloud storage proider
docToLoad.view(`https://my-file-provider.com/files/${docToLoad.id}.pdf`)

Copy

Previous
« Data types and schema

Next
Integrating with an existing database »

	What does this mean?
	Example

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

