

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Context
"Context" is a feature that allows you to pass custom data about the current user around.
This is very useful when you need to read/write data based on information that is not relevant to the collaboration system itself.
important

The context feature uses a custom header called collab-context. If you are deploying the collab server behind a proxy or something similar, the collab-context header must be accepted and forwarded for this feature to work.

Example#
Let's start with a simple example to show why context is useful.
On the client we set some application specific information about the current user. In this example lets pretend they navigated into a "project" with the ID 'abc'. Our resolvers need this data, so we need to set that data in our context:
// Client code

import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({ ...options })

await client.setContext({
 projectId: 'abc'
})

Copy

Now, our resolvers have access to this context whenever they are called:
// Server code

import CollabServer from "@pdftron/collab-server";

const server = new CollabServer({
 resolvers: {
 Mutation: {
 addDocument: async (doc, ctx) => {

 console.log(ctx) // { projectId: 'abc' }

 // get a reference to our fictional ORM
 const db = getDatabaseConnection();

 const newDoc = await db
 .insert('documents')
 .values({
 author_id: doc.authorId,
 is_public: doc.isPublic,
 name: doc.name,
 created_at: doc.createdAt,
 updated_at: doc.updatedAt,

 // Get project ID from context
 project_id: ctx.projectId
 });

 return newDoc;
 },
 },
 },
});

Copy

As you can see, this is useful for writing additional data that the collaboration system is not aware of. There are also many other use cases such as permissions.
Setting context#
Context must be set client side with the CollabClient module. See this guide for more info.
Using context#
Context is provided to most server side callback functions. This includes all resolvers, email handlers, authentication functions, permission callbacks, transform functions (SQL generator) and middleware (SQL generator)
See the relevant guides for more information.
Default values#
Whenever possible, the collaboration server will inject the userId property onto the context object. This property is not guaranteed to exist, but should be there if a user is signed in.
Security#
Context is stored in signed JWT cookies. Before passing context to your callback functions, we first verify the cookie to make sure it has not been altered. If the cookie has been altered, an error will be thrown. This ensures that users cannot modify the context before its sent to the server.
note

Even though the data in context is signed, it is still visible to the user. Do not store any information that you do not want visible to the user in context.

Previous
« Logging

Next
Environment Variables »

	Example
	Setting context
	Using context
	Default values
	Security

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

