

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Email notifications
The collab server ships with utilities for sending your users' email notifications when they get a new message and when they are invited to a new document.
We also provide a default SendGrid integration if you do not already have an email service setup.
Get started#
To enable email integration, you must provide an emailOptions object to the constructor.
import CollabServer from '@pdftron/collab-server';

const server = new CollabServer({
 ...otherOptions,
 emailOptions: {
 emailHandler: () => {},
 emailQueueTimer: 1000,
 emailOnAnnotationCreated: true
 }
})

Copy

emailOptions contains 3 properties, documented below.
emailHandler(type, emailData, context): void#
The emailHandler is used to actually send emails to your customers. It is provided with all the data you need to generate a nice looking email.
The parameters passed depend on the type of email being sent. Below is the documentation for both sets of parameters.
Invite emails#
For invites, the emailHandler will be called with the following parameters.
	type (string) the type of email. Will be 'invite'
	emailData (InviteEmailData) information about the event
	context (Context) context about the user. See the context for more info.

Message emails#
For new messages, the emailHandler will be called with the following parameters.
	type (string) the type of email. Will be 'message'
	emailData (MessageEmailData) information about the event
	context (Context) context about the user. See the context for more info.

emailQueueTimer: number#
The minimum amount of time between email triggers, in ms.
For example, if you set it to 60000 (60 seconds), the emailHandler can only get called maximum once every 60 seconds. This only applies to message emails.
Defaults to 10 minutes.
emailOnAnnotationCreated: boolean#
If true, message notifications will be triggered when any annotation is created, even if there is no message content attached.
Defaults to false.
Default SendGrid integration#
To integrate with SendGrid, use the CollabServer.sendGridEmailHandler function as your emailHandler.
Please note you can still provide the emailQueueTimer and emailOnAnnotationCreated options.
import CollabServer from '@pdftron/collab-server';
import SendGrid from '@sendgrid/mail';

const server = new CollabServer({
 ...otherOptions,
 emailOptions: {
 emailHandler: CollabServer.sendGridEmailHandler({
 sendGrid: SendGrid,
 emailServiceApiKey: "your_sendgrid_api_key",
 emailSender: "your_verified_email",
 senderName: "name_of_sender",
 templateId: {
 message: "template_id_for_message_emails",
 invite: "template_id_for_invite_emails"
 },
 getTemplateData: (type, data) => {
 return {
 subject: 'Your subject here',
 custom: 'any other custom data'
 }
 }
 }),
 emailQueueTimer: 1000,
 emailOnAnnotationCreated: true
 }
})

Copy

CollabServer.sendGridEmailHandler(options)#
	options (object) your sendgrid options	sendGrid (SendGrid) a reference to the @sendgrid/mail module.
	emailServiceApiKey (string) your send grid API key
	emailSender (string) your verified send grid sender email
	senderName (string) the name of who is sending the email
	templateId (object) your template IDs for emails	message (string) template ID for message emails
	invite (string) template ID for invite emails

	getTemplateData (function) A function that gets data for the email. Data returned here will be used in your dynamic template. See below for more info.

getTemplateData#
The getTemplateData is used to get data about the email and inject it into your SendGrid template. This allows you to set custom message text, subject, etc. This function can be asynchronous.
getTemplateData(type, data): Object | Promise<Object>
	type (string) either 'invite' or 'message'
	data (Object) depending on the type param, this will either be passed a InviteEmailData or a MessageEmailData

note

To use a dynamic subject, you need to set the subject of your dynamic template to {{{subject}}}. See this thread for more details.

For example, if your SendGrid template looked like this:
<html>
 <body>
 <h1>{{ title }}</h1>
 <p>{{ message }}</p>
 </body>
</html>

Copy

Your getTemplateData could look something like this:
const server = new CollabServer({
 ...otherOptions,
 emailOptions: {
 emailHandler: CollabServer.sendGridEmailHandler({
 ...other,
 getTemplateData: (type, data) => {

 if(type === 'message') {

 const { messages } = data;

 return {
 subject: 'New messages!',
 title: 'You have unread messages',
 message: `You have ${messages.length} new messages waiting`,
 }
 }

 if(type === 'invite') {
 return {
 subject: "You have been invited to a document",
 title: `You were invited to ${data.documentName} by ${data.sentBy}`,
 message: 'View the document here'
 }
 }
 }
 }),
 }
})

Copy

By default, the following data is pre-populated in the dynamic data:
For invites:
	documentName
	documentId
	sentBy

For messages:
	messages (an array of MessageEmaildata)

Types#
InviteEmailData#
InviteEmailData is an object with the following properties
	sentBy (string) the username of the person who triggered the event
	documentId (string) the id of the corresponding document
	documentName (string) the name of the corresponding document
	sendTo (string[]) a list of emails who should receive the notification
	usersInvited (object[]) a list of all users who were invited	id (string) the user's id
	userName (string) the user's username
	email (string) the user's emails

MessageEmailData#
MessageEmaildata is an object with the following properties
	sendTo (string) the email who should receive the notification
	messages (Message[]) A list of all the messages the user received since the last time this was called. See below for the Message properties

Message
Each Message object contains the following properties.
	annotationId (string) the ID of the annotation the message belongs to
	messageText (string) the text of the message
	documentName (string) the name of the document the message belongs to
	documentId (string) the Id of the document the message belongs to
	sentBy (string) the user who sent the message

Previous
« Cookie configuration

Next
Permissions »

	Get started	emailHandler(type, emailData, context): void
	emailQueueTimer: number
	emailOnAnnotationCreated: boolean

	Default SendGrid integration	CollabServer.sendGridEmailHandler(options)

	Types	InviteEmailData
	MessageEmailData

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

