

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Permissions
The server makes sure that users have permissions to perform certain actions.
By default, the following rules are set:
Document permissions
	Any user can create a document
	Only the author of a document can edit it
	Only document members (people who were invited) can view a document (unless the document is public)
	Only the author of a document can delete it
	Only the author of a document can invite users to it

Annotation permissions
	Only members of the document can add annotations to it
	Only the author of the annotation can edit it
	Only members of the document can view it
	Only the author of the annotation can delete it

Snapshot permissions
	Only members of the document can create snapshots
	Only the author of the snapshot can edit it
	Any member of the document can read snapshots
	Only the author of the snapshot can delete it
	Only the document owner can revert a document to a snapshot

If you are not happy with these defaults, you can customize them as per the guide below.
How permissions work#
Permissions behave slightly different depending on if the user is trying to read or write data.
Reading data
If a user tries to read data that they do not have permissions for, that data is simply ignored / filtered out. For example, if a user loads a document but they do not have permission to read annotations, the document will still be loaded but no annotations will be displayed.
Permissions are also checked before firing real-time events. For example, imagine user 1 and user 2 are both viewing a document. User 1 creates a new annotation, but user 2 does not have read permissions. In this case, user 2 will not receive a real time update (because they do not have permission to view annotations).
Writing data
If a user tries to write data and they do not have the proper permissions to do so, an error will be thrown on both the server and client. These errors can be caught on the client with the permission error events.
Customizing permissions#
You can change the default permissions by passing a permissions object to the server constructor.
The permissions object let you set entity level permissions for each action type (add, edit, delete, invite).
The permissions object has three properties, CollabServer.Permissions.Entities.DOCUMENT, CollabServer.Permissions.Entities.ANNOTATION, and CollabServer.Permissions.Entities.SNAPSHOT. All of these are optional.
import CollabServer from '@pdftron/collab-server';

const server = new CollabServer({
 ...otherOptions,
 permissions: {
 [CollabServer.Permissions.Entities.DOCUMENT]: {

 },
 [CollabServer.Permissions.Entities.ANNOTATION]: {

 },
 [CollabServer.Permissions.Entities.SNAPSHOT]: {

 }
 }
});

Copy

Permissions in the DOCUMENT object apply to documents, and permissions in the ANNOTATION object apply to annotations, and so on.
From here you can set permissions based on actions (add, edit, delete, invite). To do this set the key of the object to whatever action permission you want to set, and set the value to the role that the user must be to execute that action.
For example, to make it so that any member of a document can edit it, you would do:
import CollabServer from '@pdftron/collab-server';

const server = new CollabServer({
 ...otherOptions,
 permissions: {
 [CollabServer.Permissions.Entities.DOCUMENT]: {
 [CollabServer.Permissions.Actions.EDIT]: CollabServer.Permissions.Roles.DOCUMENT_MEMBER
 },
 }
});

Copy

Actions#
The possible actions are listed below (you can also view the API docs here)
	Name	Description
	CollabServer.Permissions.Actions.ADD	adding an entity
	CollabServer.Permissions.Actions.EDIT	editing an entity
	CollabServer.Permissions.Actions.READ	reading/viewing an entity
	CollabServer.Permissions.Actions.DELETE	deleting an entity
	CollabServer.Permissions.Actions.INVITE	inviting someone to an entity

Roles#
The possible roles are listed below (you can also view the API docs here)
	Name	Description
	CollabServer.Permissions.Roles.ANNOTATION_AUTHOR	The user must be the auth of the annotation to perform the action
	CollabServer.Permissions.Roles.DOCUMENT_AUTHOR	The user must be the document of the author to perform the action
	CollabServer.Permissions.Roles.DOCUMENT_MEMBER	The user must be a member of the document to perform the action
	CollabServer.Permissions.Roles.SNAPSHOT_AUTHOR	Only applies to snapshots. Only the author of the snapshot can perform the action
	CollabServer.Permissions.Roles.ANY	Anyone can perform the action

Custom roles#
If you want more fine tuned control over the permissions, you can pass an auth function instead of a role that determines if the user is allowed to perform the action.
The function can be async and must resolve with true if the user is allowed to make the operation, or false otherwise.
authFunction(entity, userId, context): Promise<boolean>#
	entity (Annotation | Document | Snapshot) the entity being operated on.
	userId (string) the ID of the user who is trying to read or write the data
	context (Context) context about the user. See the context guide for more info.

You can pass an authFunction to any permission setting.
For example, if you want to make a whitelist of emails who can create documents, you could do this:
import CollabServer from '@pdftron/collab-server';

const whitelist = [
 'joe@email.com',
 'bob@email.com'
]

const server = new CollabServer({
 ...otherOptions,
 permissions: {
 [CollabServer.Permissions.Entities.DOCUMENT]: {
 [CollabServer.Permissions.Actions.ADD]: (document, userId) => {
 const user = await myDB.query(`SELECT * FROM users WHERE id = ${userId} LIMIT 1`);
 const { email } = user;
 return whitelist.includes(email);
 }
 },
 }
});

Copy

Permission caching#
The Collaboration server heavily caches permission checks to help prevent making unnecessary queries to your database. The server currently caches the following information:
	Document membership status
	Document author status
	Annotation membership status
	Annotation author status
	Annotation ID to document ID relationships

info

If a custom permission function is provided, we do not cache the result, as the results could change from call to call. We recommend caching the results of custom roles yourself.

By default, the server will store a maximum of 5000 permission checks with a TTL of one hour using a first in first out method. However, these values can be configured using the permissionCacheSettings option (these settings are all optional).
const server = new CollabServer({
 ...otherOptions,
 permissionCacheSettings: {
 // The maximum amount of time an entry can remain in the cache (in MS). Defaults to one hour
 ttl: 1000 * 60,

 // The maximum number of entries that can be stored in the cache at one time. Defaults to 5000
 maxCacheSize: 1000,

 // If set, reading a value from the cache will reset the TTL. Defaults to false
 resetAgeOnCheck: true
 }
});

Copy

This is an in-memory cache, so restarting the server will clear the cache.
Troubleshooting permissions#
If you are seeing unexpected behavior related to permissions, turn on debug logs by adding the following lines to your server constructor:
import CollabServer from '@pdftron/collab-server'

new CollabServer({
 ...otherOptions,
 logLevel: CollabServer.LogLevels.DEBUG,
 filterLogsByTag: CollabServer.LogTags.PERMISSIONS,
})

Copy

Troubleshooting permission caching
import CollabServer from '@pdftron/collab-server'

new CollabServer({
 ...otherOptions,
 logLevel: CollabServer.LogLevels.DEBUG,
 filterLogsByTag: CollabServer.LogTags.PERMISSION_CACHE,
})

Copy

Previous
« Email notifications

Next
Logging »

	How permissions work
	Customizing permissions	Actions
	Roles

	Custom roles	authFunction(entity, userId, context): Promise<boolean>

	Permission caching
	Troubleshooting permissions

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

