

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Versioning / Snapshots
Versions of documents can be created by creating "Snapshots". A snapshot is just a copy of a document at any point of time. A document can be reverted to a snapshot at any time.
As long as you provide the required snapshot resolvers, no additional server configuration is required.
To use the snapshot feature, read the client side guide on snapshots.
The rest of this guide outlines how snapshots work under the hood, as well as a couple configuration options
How snapshots work#
Creating snapshots#
When a snapshot is created, the following operations take place:
1) The database is queried for all annotations belonging to the document
2) All the annotation's XFDF gets merged into a single XFDF string
	Note: If any of the annotations contain large base64 strings (stamps, images, signatures, etc), these assets get put into a separate snapshot assets table.

3) A new row gets added to the Snapshots table, where the XFDF content is one big XFDF string containing all the annotations at that point in time.
[image:]
Previewing snapshots#
When a snapshot is previewed, we simply hide all of the current annotations on the document and render the XFDF from the chosen snapshot.
The database is not altered in any way when previewing a snapshot. The entire operation happens client side.
Restoring snapshots#
When a snapshot is restored, a few things happen:
1) A backup snapshot of the document is created using the same flow as described above.
2) The XFDF of the snapshot is split into individual XFDF strings, one per annotation
3) The split up annotations are inserted into your Annotations table
4) The old annotations are deleted
This operation is potentially destructive since it deletes all the current annotations for that document from your database.
[image:]
Snapshot assets#
Some annotations can be extremely large. For example, stamp annotations typically contain a base64 encoded image which can be several MB big.
Reading large strings from a database can get very slow. Here are some results from our testing using an SQL database:
	String length (chars)	Execution time (ms)	Description
	10173	62	10 rectangle annotations (no base 64)
	1407552	123	2 stamp annots
	2807310	233	4 stamp annots
	4207068	394	6 stamp annots
	9106196	1456	13 stamp annots
	14005350	3216	20 stamp annots

You can see that read times get exponentially longer as the size of the string increases.
This poses a problem. When creating snapshots containing many stamp annotations, we could be creating extremely large strings that can take several seconds to load from the database.
Our solution to this problem is using a snapshot assets table.
The snapshot assets table is used to store large base 64 strings, which reduces the size of our main snapshots XFDF.
When a snapshot is created, any base64 strings get pulled out and stored separately in the snapshot assets table. The original XFDF then gets a reference to that asset so it can be queried and replaced later.
[image:]
Reading snapshot assets is the same process, but in reverse. We fetch the snapshots XFDF, and then replace any references to assets with the actual asset:
[image:]
This process significantly reduces the amount of time it takes to query large XFDF strings.
Disabling snapshot assets#
If you do not want to have a separate SnapshotAssets table, this feature can be disabled by passing disableSnapshotAssets: true to the server constructor.
import CollabServer from '@pdftron/collab-server'

const server = new CollabServer({
 disableSnapshotAssets: true
})

Copy

If snapshot assets are disabled, then the large XFDF strings will be included directly in the Snapshots table.

Previous
« Utilities

Next
The annotationId field »

	How snapshots work	Creating snapshots
	Previewing snapshots
	Restoring snapshots
	Snapshot assets
	Disabling snapshot assets

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

