

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Join queries
warning

This feature is experimental

In certain scenarios, data that the collaboration system requires may be stored in a separate table from the rest of the data.
Take this database schema for example:
[image:]
The collaboration system expects every annotation to have a documentId, but in the structure above, that information is contained in a separate table (DocumentAnnotations).
Since documentId cannot be queried directly from Annotations, we must do a join query on DocumentAnnotations to capture that data.
To make a join query, you can provide a join property to the column you need to make a join query on.
The join property#
The join property accepts an array with four strings:
import SQLResolverGenerator, { MutationOperationType } from '@pdftron/collab-sql-resolver-generator';

const resolvers = SQLResolverGenerator({
 info: {
 Annotations: {
 table: 'Annotations',
 columns: {
 documentId: {
 join: ['TableName.ColumnName', 'JoinLeft', 'JoinOperator', 'JoinRight'],
 },
 ...other
 },
 },
 ...etc
 }
})

Copy

The first item in the array should be the name of the Table and Column that you want to Select. The next three items build up the WHERE clause for the join query.
In our example database schema above, we would set the following:
import SQLResolverGenerator, { MutationOperationType } from '@pdftron/collab-sql-resolver-generator';

const resolvers = SQLResolverGenerator({
 info: {
 Annotations: {
 table: 'Annotations',
 columns: {
 documentId: {
 join: [
 // INNER JOIN DocumentAnnotations.documentId
 // ON Annotations.id = DocumentAnnotations.annotationId
 'DocumentAnnotations.documentId',
 'Annotations.id',
 '=',
 'DocumentAnnotations.annotationId'
],
 },
 ...other
 },
 },
 ...etc
 }
})

Copy

Complex join queries#
For more advanced join queries, you can pass a function as the second item of the join array. This function accepts an instance of Knex.JoinQuery and can be used to build up your join clause.
For example, lets pretend you have this database structure:
[image:]
The collaboration system requires that we return the ID of the user who created the document. In this case, that information is part of the "UserDocuments" table, which requires us to do a nested join query. This is what we would do:
import SQLResolverGenerator, { MutationOperationType } from '@pdftron/collab-sql-resolver-generator';

const resolvers = SQLResolverGenerator({
 info: {
 Documents: {
 table: "Documents",
 columns: {
 authorId: {
 join: ['UserDocuments.userId', (builder) => {
 builder
 .on('UserDocuments.documentId', '=', 'Documents.id')
 .andOnVal('UserDocuments.isOwner', '=', true)
 }],
 },
 ...other
 }
 },
 ...etc
 }
})

Copy

Previous
« Events

Next
Logging »

	The join property
	Complex join queries

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

