

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Migrating from v1 to v2
Version 2 ships with some breaking changes.
New client API#
Version 2.0 ships with an entirely reworked client side API.
Breaking changes suck (we know!) - but this change was important to pave the path forwards for these modules.
Below is a list of all breaking changes:
	Login methods now return a User instance. getUserSession, loginAnonymously, loginWithPassword, and loginWithToken now all return an instance of User.
	client.getDocumentPaginator() and client.getAllDocuments() have been moved onto the User class. An instance of User must be obtained before you can fetch documents. See above for more info.
	client.loadDocument() has been removed in favor of User.createDocument() and Document.view()
	client.getDocumentInfo() has been removed. Document information can be retrieved directly from the Document class.
	Custom query functionality has been removed. This means client.customQuery() no longer exists
	client.isAnnotationUnread() has been removed in favor of Annotation.isRead.
	client.getUnreadCountForDocument() has been removed in favor of Document.unreadCount
	client.logout() has been moved to User.logout()
	client.isDocumentMember() has been removed in favour of Document.isMember()
	client.canJoinDocument() has been moved to Document.canJoin()
	client.joinDocument() has been moved to Document.join()
	client.leaveDocument() has been moved to Document.leave()
	client.getConnectedUsers() has been removed in favour of Document.getConnectedUsers()
	client.editDocument() has been removed in favour of Document.edit()
	client.getDocumentId() was removed. Use client.currentDocumentId instead.
	client.inviteUsersToDocument() was removed in favour of Document.inviteUsers()
	client.markAllAnnotationsAsRead() was moved to Document.markAllAnnotationsAsRead()
	client.copyAnnotations() was removed in favour of the new Snapshot feature
	client.createSnapshot() was moved to Document.createSnapshot
	client.getSnapshotPaginator() was moved to Document.getSnapshotPaginator()
	client.getSnapshot() was removed.
	client.subscribe() was moved to client.EventManager.subscribe().	Additionally, names of events have changed and the parameters the events are provided with have changed as well. Please see the events guide for more information on the new event system.

	The parameters passed into the notification callbacks have changed. See this guide for more info.

Upgrading WebViewer#
Version 2.0 requires that WebViewer 8.0+ is installed and used. To learn how to migrate to WebViewer 8.0, please see this guide
Handling timestamps#
In version 1, fields such as createdAt and updatedAt were provided a unix timestamp in MS (for example, 1622647081013). However, this was not flexible enough for many databases.
Now, these fields will be set to the result of your getNow() function.
We recommend setting this function to return a database constant that works with your database.
import CollabServer from '@pdftron/collab-server';

const server = new CollabServer({
 getNow: () => 'NOW()',
 ...otherOptions
});

Copy

Now, your resolvers will receive "NOW()" instead of a unix timestamp, meaning this value can be inserted directly.
V1:
import CollabServer from '@pdftron/collab-server'

const server = new CollabServer({
 resolvers: {
 Mutation: {
 addDocument: (doc, context) => {
 // get a reference to our fictional ORM
 const db = getDatabaseConnection();

 console.log(doc.createdAt) // 1622647081013

 const newDoc = await db
 .insert('documents')
 .values({
 author_id: doc.authorId,
 is_public: doc.isPublic,
 name: doc.name,

 // These dates used to have to be transformed into
 // a format that works with our database
 created_at: new Date(doc.createdAt).toISOString(),
 updated_at: new Date(doc.updatedAt).toISOString(),
 });

 return newDoc;
 }
 }
 }
})

Copy

V2:
import CollabServer from '@pdftron/collab-server'

const server = new CollabServer({
 getNow: () => 'NOW()', // Add the new `getNow` parameter
 resolvers: {
 Mutation: {
 addDocument: (doc, context) => {
 // get a reference to our fictional ORM
 const db = getDatabaseConnection();

 console.log(doc.createdAt) // NOW()

 const newDoc = await db
 .insert('documents')
 .values({
 author_id: doc.authorId,
 is_public: doc.isPublic,
 name: doc.name,

 // We no longer have to transform these values
 // as they are equal to `NOW()`
 created_at: doc.createdAt,
 updated_at: doc.updatedAt,
 });

 return newDoc;
 }
 }
 }
})

Copy

For more info, view the timestamps guide.
Generating IDs#
In version 1, IDs were generated internally and passed to the resolvers. However, this was not feasible for databases with auto-incrementing IDs.
Now, IDs are not provided to mutation resolvers that write data, and instead you must generate the ID yourself, or rely on your database to do so. This ID must then be returned from your resolver.
V1:
import CollabServer from '@pdftron/collab-server'

const server = new CollabServer({
 resolvers: {
 Mutation: {
 addDocument: (doc, context) => {
 // get a reference to our fictional ORM
 const db = getDatabaseConnection();

 console.log(doc.id) // 6d99a211-94b4-40ef-b008-c883da393054

 const newDoc = await db
 .insert('documents')
 .values({
 id: doc.id, // This ID used to be provided
 author_id: doc.authorId,
 is_public: doc.isPublic,
 name: doc.name,
 created_at: new Date(doc.createdAt).toISOString(),
 updated_at: new Date(doc.updatedAt).toISOString(),
 });

 return newDoc;
 }
 }
 }
})

Copy

V2:
import CollabServer from '@pdftron/collab-server'

const server = new CollabServer({
 resolvers: {
 Mutation: {
 addDocument: (doc, context) => {
 // get a reference to our fictional ORM
 const db = getDatabaseConnection();

 console.log(doc.id) // undefined

 const newDoc = await db
 .insert('documents')
 .values({
 // An ID is no longer provided - the DB must generate it
 author_id: doc.authorId,
 is_public: doc.isPublic,
 name: doc.name,
 created_at: new Date(doc.createdAt).toISOString(),
 updated_at: new Date(doc.updatedAt).toISOString(),
 });

 return newDoc;
 }
 }
 }
})

Copy

New annotationId column#
Version 2 adds an annotationId to the annotation entity. This is an optimization that makes handling annotations easier for cross platform use (coming soon).
The annotationId column will be set to the ID given to the annotation by the client. It will always be a string, but might not necessarily be unique.
Annotations are now queried by annotationId and pageNumber rather than by id.
This change only requires you to add an annotation_id column to your annotations table, and to update your annotation resolvers to use the new property.
note

If your database does currently not store this value, you can write a migration script using our utility

V1:
import CollabServer from '@pdftron/collab-server'

const server = new CollabServer({
 resolvers: {
 Mutation: {
 addAnnotation: (annotation, context) => {
 // get a reference to our fictional ORM
 const db = getDatabaseConnection();

 console.log(annotation.id) // 6d99a211-94b4-40ef-b008-c883da393054

 const newAnnotation = await db
 .insert('annotations')
 .values({
 id: annotation.id, // This id is same as the 'name' value in the xfdf
 xfdf: annotation.xfdf,
 annot_contents: annotation.annotContents,
 author_id: annotation.authorId,
 document_id: annotation.documentId,
 page_number: annotation.pageNumber,
 in_reply_to: annotation.inReplyTo,
 created_at: new Date(annotation.createdAt).toISOString(),
 updated_at: new Date(annotation.updatedAt).toISOString(),
 });

 return newAnnotation;
 }
 }
 }
})

Copy

V2:
import CollabServer from '@pdftron/collab-server'

const server = new CollabServer({
 resolvers: {
 Mutation: {
 addAnnotation: (annotation, context) => {
 // get a reference to our fictional ORM
 const db = getDatabaseConnection();

 console.log(annotation.id) // undefined

 const newAnnotation = await db
 .insert('annotations')
 .values({
 // An ID is no longer provided - the DB must generate it
 xfdf: annotation.xfdf,
 annot_contents: annotation.annotContents,
 author_id: annotation.authorId,
 // This annotation id is generated client side
 annotation_id: annotation.annotationId,
 document_id: annotation.documentId,
 page_number: annotation.pageNumber,
 in_reply_to: annotation.inReplyTo,
 created_at: new Date(annotation.createdAt).toISOString(),
 updated_at: new Date(annotation.updatedAt).toISOString(),
 });

 return newAnnotation;
 }
 }
 }
})

Copy

Added isPublic parameter to documents query resolver#
Version two adds a isPublic parameter to the documents resolver.
Update your resolver to apply this additional field:
const server = new CollabServer({
 resolvers: {
 Query: {
 documents: async (query) => {
 const {
 ids,
 userId,
 isPublic,
 filters = {}
 } = query;

 // get a reference to our fictional ORM
 const db = getDatabaseConnection();

 let query = db
 .select('*')
 .from('documents');

 if(ids) {
 query = query.where('id', 'IN', ids)
 }

 if(isPublic) {
 query = query.where('is_public', '=', true)
 }

 if(userId) {
 query = query.where(
 'id',
 'IN',
 `
 (SELECT document_id FROM document_members WHERE user_id = '${userId}')
 `)
 }

 if(filters.createdBefore) {
 query = query.where('created_at', '<', filters.createdBefore)
 }

 if(filters.createdAfter) {
 query = query.where('created_at', '>', filters.createdAfter)
 }

 if(filters.updatedBefore) {
 query = query.where('updated_at', '<', filters.updatedBefore)
 }

 if(filters.updatedAfter) {
 query = query.where('updated_at', '>', filters.updatedAfter)
 }

 if(filters.orderBy) {
 query = query.order(
 filters.orderBy === 'updatedAt' ? 'updated_at' : 'created_at',
 filters.orderDirection
)
 }

 if (filters.limit) {
 query = query.limit(filters.limit)
 }

 const docs = await query.get()
 return docs;
 },
 },
 },
});

Copy

Updated properties on notification events#
In version 1, notification events were sent with a sentBy property that was equal to the users email. In v2, this property has been changed to an object containing both the users email and userName.
This change applies anywhere a notification event is passed.
V1
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({
 ...otherOptions,
 notificationHandler: CollabClient.defaultNotificationHandler({
 getText: (event) => {
 if(event.type === 'invite') {
 return {
 title: `New invite recieved from ${event.sentBy}`, // <-- This used to be a string
 body: `Click here to view ${event.documentName}`
 }
 }
 },
 })
})

Copy

V2
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({
 ...otherOptions,
 notificationHandler: CollabClient.defaultNotificationHandler({
 getText: (event) => {
 if(event.type === 'invite') {
 return {
 title: `New invite recieved from ${event.sentBy.email}`, // <-- This is now an object
 body: `Click here to view ${event.documentName}`
 }
 }
 },
 })
})

Copy

documentId parameter added to annotationMembers query resolver.#
A documentId was added to the annotationMembers resolver. This allows us to fetch all annotation members for a document in a single query.
This is a simple change to make and is only required if using your own custom resolvers.
const server = new CollabServer({
 resolvers: {
 Query: {
 annotationMembers: async (query) => {
 const {
 ids,
 annotationId,
 userId,
 filters = {},
 documentId
 } = query;

 // get a reference to our fictional ORM
 const db = getDatabaseConnection();

 let query = db
 .select('*')
 .from('annotation_members');

 if(ids) {
 query = query.where('id', 'IN', ids)
 }

 if(userId) {
 query = query.where('user_id', '=', userId);
 }

 if(annotationId) {
 query = query.where('annotation_id', '=', annotationId);
 }

 if(documentId) {
 query = query.where('document_id', '=', documentId);
 }

 if(filters.createdBefore) {
 query = query.where('created_at', '<', filters.createdBefore)
 }

 if(filters.createdAfter) {
 query = query.where('created_at', '>', filters.createdAfter)
 }

 if(filters.updatedBefore) {
 query = query.where('updated_at', '<', filters.updatedBefore)
 }

 if(filters.updatedAfter) {
 query = query.where('updated_at', '>', filters.updatedAfter)
 }

 if(filters.orderBy) {
 query = query.order(
 filters.orderBy === 'updatedAt' ? 'updated_at' : 'created_at',
 filters.orderDirection
)
 }

 if (filters.limit) {
 query = query.limit(filters.limit)
 }

 const members = await query.get()
 return members;
 },
 },
 },
});

Copy

Create the COLLAB_KEY environment variable#
If you do not have the COLLAB_KEY environment variable set already, you must do so in v2.0.
In version 1, the COLLAB_KEY environment variable was only required in certain situations. In version 2.0, it must now always be set.
Read how to set it here.

Previous
« Troubleshooting

Next
Getting started »

	New client API
	Upgrading WebViewer
	Handling timestamps
	Generating IDs
	New annotationId column
	Added isPublic parameter to documents query resolver
	Updated properties on notification events
	documentId parameter added to annotationMembers query resolver.
	Create the COLLAB_KEY environment variable

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

