

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Annotations and unread counts
Information about a document's annotations can be retrieved with the following APIs.
Getting a document's annotations#
Annotations for a document can be retrieved with the Document.getAnnotations API. For information on getting a user's documents, see the getting user documents guide.
Get unread annotation count#
You can get the total number of unread messages with the Document.unreadCount property. This is useful for display an unread message icon in your UI.
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({...options})
const user = await client.loginAnonymously('Joe');
const document = await user.getDocument('abc');

console.log(document.unreadCount)

Copy

Events are triggered whenever this value is changed, so you can keep your UI up to date in real time. See this guide for more information.
Check if annotation is unread#
To check if a singular annotation is unread, use the Annotation.isRead property.
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({...options})
const user = await client.loginAnonymously('Joe');
const document = await user.getDocument('abc');

const annotations = await document.getAnnotations();

for(const annotation of annotations) {
 console.log(`Annotation ${annotation.id} is read: ${annotation.isRead}`);
}

Copy

Mark all annotations as read#
You can use the Document.markAllAnnotationsAsRead API to set all annotations in the document to read.
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({...options})
const user = await client.loginAnonymously('Joe');
const document = await user.getDocument('abc');

await document.markAllAnnotationsAsRead();

Copy

This will update the unread annotation count of the document.
Maximum Annotation size#
You can use the maxAnnotationSize constructor option to set the maximum annotation size that is allowed to create in bytes.
 const collabClient = new CollabClient({
 ...options,
 maxAnnotationSize: 10000 // in bytes
 })

Copy

If an annotation is created above this size, it will be rejected and an annotationSizeError event will be triggered. See this guide for more info.
Prevent annotations from saving in database#
In certain scenarios, you may want to allow the user to create annotations without having them sync to the database and other users.
You can prevent annotations from being synced by using the annotationFilter option.
This function accepts an action (either "add", "modify" or "delete") and the WebViewer Annotation. Return true from this function if you want the annotation to be synced to the database as normal, or return false if the annotation should only be kept locally and not stored in the database.
note

When returning false from this function, the annotation will still be drawn locally for the current user.

This function can be asynchronous.
Example
Prevent new highlight annotations from being synced to the database:
import WebViewer from '@pdftron/webviewer'
import { CollabClient } from '@pdftron/collab-client'

WebViewer({ ...options }).then((instance) => {

 const client = new CollabClient({
 instance,
 annotationFilter: (action, annotation) => {
 if(action === 'add' && annotation instanceof instance.Core.Annotations.TextHighlightAnnotation) {
 // Prevent highlight annotations from being synced
 return false;
 }

 // All other annotations can be synced
 return true;
 }
 })

})

Copy

Copying annotations to another document#
Annotations can be copied from one document to another by using the Document.copyAnnotationsToDocument API.
This API will copy any annotations to the new document that don't already exist.
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({...options})
const user = await client.loginAnonymously('Joe');
const document = await user.getDocument('abc');

await document.copyAnnotationsToDocument('other-document-id-here');

Copy

Only copy certain annotations#
You may only want to copy certain annotations to another document. To accomplish this, pass a second annotationFilter parameter to copyAnnotationsToDocument. This function is used to filter the annotations that are copied over. The function accepts a WebViewer Annotation and must return a boolean representing if that annotation should be copied over or not.
Only copy rectangle annotations
await document.copyAnnotationsToDocument('other-document-id-here', (annot) => {
 return annot instanceof instance.Core.Annotations.RectangleAnnotation;
});

Copy

Only copy annotations with "approved" status
await document.copyAnnotationsToDocument('other-document-id-here', (annot) => {
 return annot.getStatus() === 'Accepted';
});

Copy

Copy all children#
The above code will only copy the annotations you return "true" to, but it will not include that annotations children by default. To include an annotations children, pass the "includeChildren" flag as a third parameter.
The code below will copy any annotation with an "Accepted" status, along with all its children.
await document.copyAnnotationsToDocument('other-document-id-here',
 (annot) => {
 return annot.getStatus() === 'Accepted';
 },
 { includeChildren: true }
);

Copy

Previous
« Inviting users to documents

Next
Mentions »

	Getting a document's annotations
	Get unread annotation count
	Check if annotation is unread
	Mark all annotations as read
	Maximum Annotation size
	Prevent annotations from saving in database
	Copying annotations to another document	Only copy certain annotations
	Copy all children

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

