

Skip to main content
The WebViewer Collaboration project has been deprecated, but you can still build real-time collaboration with WebViewer.
We would love your feedback on what you'd like to see in a real-time collaboration solution so please reach out and let us know.

WebViewer CollaborationGuidesGet startedAPI ReferenceChangelogSamplesDemoLicensingSearch

WebViewer Collaboration
	Guides
	Get started
	API Reference
	Changelog
	Samples
	Demo
	Licensing

	Overview	Introduction
	Core Concepts
	Get started
	Data types and schema
	File storage
	Integrating with an existing database
	Troubleshooting
	Migrating from v1 to v2

	collab-db-postgresql	Getting started
	Setting up the database
	Connecting to the database
	Hooking up to the server
	User management
	User authentication
	Logging

	collab-server	Get started
	CORS configuration
	Resolvers
	Timestamps
	User authentication
	Cookie configuration
	Email notifications
	Permissions
	Logging
	Context
	Environment Variables
	Testing
	Deployment
	Utilities
	Versioning / Snapshots
	Advanced	The annotationId field
	Invite strategies
	Annotation sync strategies
	Health check

	collab-client	Getting started
	Logging in users
	Anonymous users
	User sessions
	Creating and Viewing documents
	Getting user documents
	Editing documents
	Public documents
	Inviting users to documents
	Annotations and unread counts
	Mentions
	Events
	Pagination
	Notifications
	Versioning / Snapshots
	Scroll Synchronization
	Connected Users
	Context
	Logging
	External annotation syncing
	Document manipulation

	collab-sql-resolver-generator	Getting started
	Configuration
	Generating resolvers
	Handling timestamps
	Middleware
	Context
	Events
	Join queries
	Logging

	collab-react	Getting started
	useClient
	useCurrentUser
	useCurrentDocument
	useDocuments
	useAnnotations
	useConnectedUsers
	useSnapshots
	useCurrentSnapshot
	useMentions
	useScrollSync
	useCurrentScrollSyncSession

Getting user documents
There are three ways to get a list of documents the user belongs to.
The main, recommended way to fetch documents is with the User.getDocumentPaginator function.
You can also get all a user's documents with the User.getAllDocuments function.
Lastly, you can get a specific document with the User.getDocument API.
getDocumentPaginator#
The User.getDocumentPaginator function is used to fetch the user's documents in a paginated manner. This is the recommended way to fetch documents.
getDocumentPaginator(options): Paginator
	options (PaginateParams) options to pass to the paginator	limit (number) how many entities to fetch with each request. This property is required.
	orderBy ('updatedAt' | 'createdAt') how the entities should be ordered when querying. Defaults to 'updatedAt', meaning documents that were most recently updated will be fetched first
	orderDirection ('ASC' | 'DESC') which direction the entities should be ordered when querying. Defaults to 'DESC' meaning newer documents are fetched first.
	before (number - timestamp in MS) Sets the query to only fetch items that were updated/created at before this date. Used to fetch older documents. Defaults to the current time.

Returns a Paginator instance.
Example
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({...options})

// Create an array to store the documents we have fetched
const documents = [];

const user = await client.loginAnonymously('Joe');

// Create a paginator that fetches 10 documents at a time
const paginator = user.getDocumentPaginator({
 limit: 10
});

// Get the first ten documents and set them in our `documents` state
const firstTen = await paginator.next();

documents.push(...firstTen);

// Add an event listener to a 'Load More' button.
// This function fetches the next 10 documents
// and pushes them onto our state
document.getElementById('load-more-button').onclick = async () => {
 const nextTen = await paginator.next();
 documents.push(...nextTen);
}

Copy

getPublicDocumentPaginator#
This API can be used to fetch all public documents in a paginated manner. Note that it will also return documents the user is already a member of.
getPublicDocumentPaginator(options): Paginator
	options (PaginateParams) options to pass to the paginator	limit (number) how many entities to fetch with each request. This property is required.
	orderBy ('updatedAt' | 'createdAt') how the entities should be ordered when querying. Defaults to 'updatedAt', meaning documents that were most recently updated will be fetched first
	orderDirection ('ASC' | 'DESC') which direction the entities should be ordered when querying. Defaults to 'DESC' meaning newer documents are fetched first.
	before (number - timestamp in MS) Sets the query to only fetch items that were updated/created at before this date. Used to fetch older documents. Defaults to the current time.

Returns a Paginator instance.
Example
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({...options})

// Create an array to store the documents we have fetched
const documents = [];

const user = await client.loginAnonymously('Joe');

// Create a paginator that fetches 10 documents at a time
const paginator = user.getPublicDocumentPaginator({
 limit: 10
});

// Get the first ten documents
const firstTen = await paginator.next();

const firstDocument = firstTen[0];

// Join the latest public document if they can
if(await firstDocument.canJoin()) {
 await firstDocument.join()
}

Copy

getAllDocuments#
getAllDocuments(): Promise<Document[]>
The getAllDocuments returns an array of all the users documents. This API should not be used in large scale applications, as it does not scale up with the number of documents a user belongs to.
Resolves to an array of Documents.
Example
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({...options})

const user = await client.loginAnonymously('Joe');

const documents = await user.getAllDocuments();

Copy

getDocument#
The getDocument API gets a single Document by its ID.
getDocument(id): Promise<Document>
	id (string) The ID of the document to fetch

Example
import { CollabClient } from '@pdftron/collab-client'

const client = new CollabClient({...options})

const user = await client.loginAnonymously('Joe');

const document = await user.getDocument('abc');

// View the document
await document.view(`http://mywebsite.com/files/${document.id}.pdf`)

Copy

Previous
« Creating and Viewing documents

Next
Editing documents »

	getDocumentPaginator
	getPublicDocumentPaginator
	getAllDocuments
	getDocument

Guides
	Overview
	Collab Server
	Collab Client
	Collab Postgresql DB

More
	API reference
	Collaboration Demo
	Support

PDFTron
	WebViewer
	Contact sales
	WebViewer Showcase

Copyright © 2022 PDFTron Systems Inc.

